Volume 7, Issue 1, June 2020, Page: 1-7
The Ground State (1s22s)2S and the Low-lying Excited (1s2ns)2S States Energy Calculations of Li-Like Ions Using Special Forms of the Hylleraas-Type Wave Functions
Babou Diop, Atoms Laser Laboratory, Department of physics, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal
Youssou Gning, Atoms Laser Laboratory, Department of physics, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal
Maurice Faye, Department of Experiential Sciences, UFR Sciences and Technologies, University of Thies, Thies, Senegal
Abdou Diouf, Atoms Laser Laboratory, Department of physics, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal
Boubacar Sow, Atoms Laser Laboratory, Department of physics, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal
Malick Sow, Atoms Laser Laboratory, Department of physics, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal
Matabara Dieng, Department of Physics, UFR Applied Sciences and Technologies of Information and Communication, University Alioune DIOP of Bambey, Bambey, Senegal
Mamadi Biaye, Departments of Physics and Chemistry, Faculty of Sciences and Technologies of Formation and Education, University Cheikh Anta Diop, Dakar, Senegal
Received: Jan. 16, 2020;       Accepted: Feb. 6, 2020;       Published: Mar. 10, 2020
DOI: 10.11648/j.ijhep.20200701.11      View  55      Downloads  16
Abstract
In this paper, we have applied the complex rotation method to the calculations energies of the ground state (1s22s) 2S and the low-lying excited (1s2ns)2S states with n = 3, 4 and 5; of lithium and its isoelectronic series. For the ground state, the calculations were made up to Z = 20 and for the low-lying excited states up to Z = 10. These energies calculations were made using new special forms of Hylleraas-type wave functions designed by combining incomplete radial hydrogenic wave functions and Hylleraas-type wave functions. Using a numerical calculation program, the values of the resonance energies are calculated. Our results are compared with the results of ab-initio calculations using Hylleraas type wave functions and with semi-empirical results by Screening Constant by Unit Nuclear Charge (SCUNC) formalism. Analysis of the present results is achieved by calculating the ratio and the difference between our values and those of other authors. The results obtained are in good agreement with those of the theoretical methods available in the literature. This agreement shows the adequacy of our wave function with small bases to satisfactorily describe the ground state and the low-lying excited states of the three-electron atomic systems.
Keywords
Wave Function, Resonance Parameters, Correlation Factors, Resonant Width, Ground State, Low-lying Excited States, Li-like Ions
To cite this article
Babou Diop, Youssou Gning, Maurice Faye, Abdou Diouf, Boubacar Sow, Malick Sow, Matabara Dieng, Mamadi Biaye, The Ground State (1s22s)2S and the Low-lying Excited (1s2ns)2S States Energy Calculations of Li-Like Ions Using Special Forms of the Hylleraas-Type Wave Functions, International Journal of High Energy Physics. Vol. 7, No. 1, 2020, pp. 1-7. doi: 10.11648/j.ijhep.20200701.11
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
R. P. Madden and K. Codling, Astrophys. J. 141, 364, (1965).
[2]
P. Dhez and D. L. Ederer, J. Phys. B 6, L59 (1973).
[3]
P. K. Carroll and E. T. Kennedy, Phys. Rev. Lett. 38, 1068, (1977).
[4]
H. D. Morgan and D. L. Ederer, Phys. Rev. A., 29, 1901, (1984).
[5]
P. R. Woodruff and J. A. R. Samson, Phys. Rev. A., 25, 848, (1982).
[6]
G. Herzberg and H. R. Moore, Can. J. Phys., 37, 1293, (1959).
[7]
H. G. Berry, Phy. Scr., 12, 5–20, (1975).
[8]
C. Eckart, Phys. Rev., 36, 878, (1930).
[9]
V. Guillemin Jr., and C. Zener, Z. Phys., 61, 199, (1930).
[10]
E. B. Wilson Jr., J. Chem. Phys., 1, 210, (1933).
[11]
H. M. James, and A. S. Coolidge, Phys. Rev., 47, 700, (1935).
[12]
H. M. James, and A. S. Coolidge, Phys. Rev., 49, 688, (1936).
[13]
A. W. Weiss, Phys. Rev., 122, 1826, (1961).
[14]
S. Larsson, Phys. Rev., 169, 49 (1968).
[15]
J. Muszynska, D. Papierowska, and W. Woznicki, Chem. Phys. Lett., 76, 136, (1980).
[16]
F. W. King, and V. Shoup, Phys. Rev. A., 33, 2940, (1986).
[17]
F. W. King, Phys. Rev. A., 40, 1735, (1989).
[18]
F. W. King, and M. P. Bergsbaken, J. Chem. Phys., 93, 2570, (1990).
[19]
D. K. McKenzie, and G. W. F. Drake, Phys. Rev. A., 44, R6973, (1991).
[20]
A. Luchow, and H. Kleindienst, Int. J. Quantum Chem., 51, 211, (1994).
[21]
Z. C. Yan, and G. W. F. Drake, Phys. Rev. A., 52, 3711, (1995).
[22]
Z. C. Yan, M. Tambasco, and G. W. F. Drake, Phys. Rev. A., 57, 1652, (1998).
[23]
Z. W. Wang, X. W. Zhu, and K. T. Chung, Phys. Rev. A., 46, 6914 (1992).
[24]
Z. W. Wang, X. W. Zhu, and K. T. Chung, Phys. Scr., 47, 65 (1993).
[25]
Y. K. Ho, Intern. J. of Quant. Chem., 10, pp. 1077-1082, (1981).
[26]
Y. K. Ho, Physics Reports 99, N°1, 1 – 68, (1983).
[27]
Y. K. Ho, J. Phys. B, 12, p. 387 (1979).
[28]
M. Biaye, M. Dieng, I. Sakho, and A. Wagué, Chin. J. Phys., 47, 166 (2009).
[29]
M. Biaye, A. Konté, N. A. B. Faye, and A. Wagué, Eur. Phys. J. D, 13, 21 (2001).
[30]
M. Biaye, A. Konte, A. S. Ndao, N. A. B. Faye, and A. Wague, Phys. Scr., 71, 39-42 (2005).
[31]
M. Biaye, A. Konté, A. S. Ndao, and A. Wague, Phys. Scr., 72, 373 (2005).
[32]
M. Biaye, Thèse de Doctorat d’Etat, Université Cheikh Anta Diop de Dakar (2005).
[33]
M. Dieng, I. Sakho, M. Biaye, and A. Wague, Chin. J. Phys., 48, 1 (2010).
[34]
M. Dieng, M. Biaye, Y. Gning, and A. Wague, Chin. J. Phys., 51, 4 (2013).
[35]
Y. Gning, M. Sow, A. Traoré, M. Dieng, B. Diakhate, M. Biaye, and A. Wague, Rad. Phys. Chem., 106, 1, (2015).
[36]
Y. Gning, Thèse de Doctorat, Université Cheikh Anta Diop de Dakar, (2016).
[37]
D. A. Varshalovich al., (Copyright by Scientific Publishing copte ltd 1988).
[38]
C. Bunge, Phys. Rev. A., 16, 249, (1977).
[39]
A. J. Thakkar, T. Koga, T. Tanabe, and H. Teruya, Chem. Phys. Lett., 366, p. 95–99, (2002).
[40]
I. Sakho, and A. Wague, Chin. J. Phys., 48, 5, (2010).
[41]
K. T. Chung, Phys. Rev. A., 44, 9, (1991).
[42]
K. T. Chung, Phys. Rev. A., 45, 11, (1992).
[43]
K. T. Chung, and X. W. Zhu, Physica Scripta., 48, 292-296, (1993).
[44]
I. Sakho, Chin. J. Phys., 52, 5, (2014).
[45]
F. W. King, Phys. Rev. A., 43, 7, (1991).
Browse journals by subject