Volume 7, Issue 1, June 2020, Page: 8-14
Novel Energy Level Structure of Dirac Oscillator in Magnetic Field
Md Moniruzzaman, Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
Syed Badiuzzaman Faruque, Department of Physics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
Received: Jan. 17, 2020;       Accepted: Mar. 9, 2020;       Published: Mar. 17, 2020
DOI: 10.11648/j.ijhep.20200701.12      View  200      Downloads  50
Abstract
We have presented an elegant high energy quantum problem, namely, the full Dirac oscillator under axial magnetic field with its full solution. We have found the energy spectrum which is rich and at the same time has a novel structure. The quantized energy levels show coupling of the oscillator frequency with the Larmor frequency in the 2D surface where the electrons under consideration follow a 2D oscillator. The axis in which magnetic field is pointed, the electrons follow a 1D oscillator. There is also coupling between spin and orbital motion and also a coupling between a resultant effect of orbital and spin motion with Larmor precession.
Keywords
(3+1) Dimensional Dirac Oscillator, Magnetic Field, Novel Energy Level Structure
To cite this article
Md Moniruzzaman, Syed Badiuzzaman Faruque, Novel Energy Level Structure of Dirac Oscillator in Magnetic Field, International Journal of High Energy Physics. Vol. 7, No. 1, 2020, pp. 8-14. doi: 10.11648/j.ijhep.20200701.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
M. Moshinsky and A. Szczepaniak, J. Phy. A 22, L817 (1989).
[2]
W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, Berline, 2000).
[3]
F. Dominguez-Adame and M. A. Gonzalen, Europhys. Lett. 13, 193 (1990).
[4]
R. P. Martinez-y-Romero, H. N. Nunez-yepez and A. L. Salas-Brito, Eur. J. Phys. 16, 135 (1995).
[5]
M. Moshinsky and Y. F. Smirnov, The Harmonic Oscillator in Modern physics (Harwood, Amsterdam, 1996).
[6]
J. Benitez, R. P. Martinez-y-Romero, H. N. Nunez Yepez and A. L. Salas-Brito, Phys. Rev. Lett. 64, 1643 (1990).
[7]
J. Benitez, R. P. Martinez-y-Romero, H. N. Nunez Yepez and A. L. Salas-Brito, Phys. Rev. Lett. 65, 2085 (1990).
[8]
R. P. Martrinez-y-Romero, M. Moreno and A. Zentella, Phys. Rev. D 43, 2036 (1991).
[9]
D. Ito, K. Mori and E. Carrieri, Nuovo Cimento A 51, 1119 (1967).
[10]
A. Bermudez, M. A. Martin -Delgado and E. Solano, Phys. Rev. A 76, 041801 (R) (2007).
[11]
E. T. Jaynes and F. W. Cumming, Proc. IEEE, 51, 89 (1963).
[12]
J. Larso, Phys. Scr. 76, 146. (2007).
[13]
L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Dover Publications, Mineola, New York 1987).
[14]
R. Renan, M. H. Pacheco and C. A. Almeida, J. Phys. A: Math. Gen. 33, L509 (2000).
[15]
C. Quimbay, P. Strange, arXiv: 1311.2021.
[16]
J. A. Franco-Villafane, E. Sadurni, S. Barkhofen, U. Kuhl, F. Mortessagne and T. H. Seligman, Phys. Rev. Lett. 111, 170405 (2013).
[17]
P. Strange and L. H. Ryder, Phys. Lett. A 380, 3465 (2016).
[18]
P. Valtancoli, J. Math. Phys. 58, 063504 (2017).
[19]
K. Zhang, L. Zhou, P. Meystre and W. Zhang, Phys. Rev. Lett. 121, 110401 (2018).
[20]
H. Bada and M. Aouachria, Mod. Phys. Lett. A 34, 1950246 (2019).
[21]
Ta-You Wu, in: Quantum Mechanics (World Scientific Publishhing Co Pte Ltd, Singapore, 1986).
[22]
P. Strange, Relativistic Quantum Mechanics, (Cambridge University Press, Cambridge, Uk, 1998).
Browse journals by subject